Package: EMLI 0.2.0

EMLI: Computationally Efficient Maximum Likelihood Identification of Linear Dynamical Systems

Provides implementations of computationally efficient maximum likelihood parameter estimation algorithms for models that represent linear dynamical systems. Currently, one such algorithm is implemented for the one-dimensional cumulative structural equation model with shock-error output measurement equation and assumptions of normality and independence. The corresponding scientific paper is yet to be published, therefore the relevant reference will be provided later.

Authors:Vytautas Dulskis [cre, aut], Leonidas Sakalauskas [aut]

EMLI_0.2.0.tar.gz
EMLI_0.2.0.zip(r-4.5)EMLI_0.2.0.zip(r-4.4)EMLI_0.2.0.zip(r-4.3)
EMLI_0.2.0.tgz(r-4.5-any)EMLI_0.2.0.tgz(r-4.4-any)EMLI_0.2.0.tgz(r-4.3-any)
EMLI_0.2.0.tar.gz(r-4.5-noble)EMLI_0.2.0.tar.gz(r-4.4-noble)
EMLI_0.2.0.tgz(r-4.4-emscripten)EMLI_0.2.0.tgz(r-4.3-emscripten)
EMLI.pdf |EMLI.html
EMLI/json (API)
NEWS

# Install 'EMLI' in R:
install.packages('EMLI', repos = c('https://vy-du.r-universe.dev', 'https://cloud.r-project.org'))

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 249 downloads 4 exports 0 dependencies

Last updated 2 years agofrom:14f70fed52. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 16 2025
R-4.5-winOKMar 16 2025
R-4.5-macOKMar 16 2025
R-4.5-linuxOKMar 16 2025
R-4.4-winOKMar 16 2025
R-4.4-macOKMar 16 2025
R-4.4-linuxOKMar 16 2025
R-4.3-winOKMar 16 2025
R-4.3-macOKMar 16 2025

Exports:calculate_likelihoodestimate_parametersevaluate_estimatesgenerate_data

Dependencies:

Readme and manuals

Help Manual

Help pageTopics
calculate_likelihoodcalculate_likelihood
estimate_parametersestimate_parameters
evaluate_estimatesevaluate_estimates
generate_datagenerate_data